Reading Dependencies from Polytree-Like Bayesian Networks Revisited

نویسنده

  • Jose M. Peña
چکیده

We present a graphical criterion for reading dependencies from the minimal directed independence map G of a graphoid p, under the assumption that G is a polytree and p satisfies weak transitivity. We prove that the criterion is sound and complete. We argue that assuming weak transitivity is not too restrictive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reading Dependencies from Polytree-Like Bayesian Networks

We present a graphical criterion for reading dependencies from the minimal directed independence map G of a graphoid p when G is a polytree and p satisfies composition and weak transitivity. We prove that the criterion is sound and complete. We argue that assuming composition and weak transitivity is not too restrictive.

متن کامل

Discrete Bayesian Networks: The Exact Posterior Marginal Distributions

In a Bayesian network, we wish to evaluate the marginal probability of a query variable, which may be conditioned on the observed values of some evidence variables. Here we first present our “border algorithm,” which converts a BN into a directed chain. For the polytrees, we then present in details, with some modifications and within the border algorithm framework, the “revised polytree algorit...

متن کامل

Indirect Causes in Dynamic Bayesian Networks Revisited

Modeling causal dependencies often demands cycles at a coarse-grained temporal scale. If Bayesian networks are to be used for modeling uncertainties, cycles are eliminated with dynamic Bayesian networks, spreading indirect dependencies over time and enforcing an infinitesimal resolution of time. Without a “causal design,” i.e., without anticipating indirect influences appropriately in time, we ...

متن کامل

Complexity of Inferences in Polytree-shaped Semi-Qualitative Probabilistic Networks

Semi-qualitative probabilistic networks (SQPNs) merge two important graphical model formalisms: Bayesian networks and qualitative probabilistic networks. They provide a very general modeling framework by allowing the combination of numeric and qualitative assessments over a discrete domain, and can be compactly encoded by exploiting the same factorization of joint probability distributions that...

متن کامل

sal Trees fro n - nation * Dan

In constructing probabilistic networks from human judgments, we use causal relationships to convey useful patterns of dependencies. The converse task, that of inferring causal relationships from patterns of dependencies, is far less understood. Th’ 1s paper establishes conditions under which the directionality of some interactions can be determined from non-temporal probabilistic information an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010